CVE-2024-47679

Nov. 8, 2024, 4:15 p.m.

4.7
Medium

Description

In the Linux kernel, the following vulnerability has been resolved: vfs: fix race between evice_inodes() and find_inode()&iput() Hi, all Recently I noticed a bug[1] in btrfs, after digged it into and I believe it'a race in vfs. Let's assume there's a inode (ie ino 261) with i_count 1 is called by iput(), and there's a concurrent thread calling generic_shutdown_super(). cpu0: cpu1: iput() // i_count is 1 ->spin_lock(inode) ->dec i_count to 0 ->iput_final() generic_shutdown_super() ->__inode_add_lru() ->evict_inodes() // cause some reason[2] ->if (atomic_read(inode->i_count)) continue; // return before // inode 261 passed the above check // list_lru_add_obj() // and then schedule out ->spin_unlock() // note here: the inode 261 // was still at sb list and hash list, // and I_FREEING|I_WILL_FREE was not been set btrfs_iget() // after some function calls ->find_inode() // found the above inode 261 ->spin_lock(inode) // check I_FREEING|I_WILL_FREE // and passed ->__iget() ->spin_unlock(inode) // schedule back ->spin_lock(inode) // check (I_NEW|I_FREEING|I_WILL_FREE) flags, // passed and set I_FREEING iput() ->spin_unlock(inode) ->spin_lock(inode) ->evict() // dec i_count to 0 ->iput_final() ->spin_unlock() ->evict() Now, we have two threads simultaneously evicting the same inode, which may trigger the BUG(inode->i_state & I_CLEAR) statement both within clear_inode() and iput(). To fix the bug, recheck the inode->i_count after holding i_lock. Because in the most scenarios, the first check is valid, and the overhead of spin_lock() can be reduced. If there is any misunderstanding, please let me know, thanks. [1]: https://lore.kernel.org/linux-btrfs/000000000000eabe1d0619c48986@google.com/ [2]: The reason might be 1. SB_ACTIVE was removed or 2. mapping_shrinkable() return false when I reproduced the bug.

Product(s) Impacted

Vendor Product Versions
Linux
  • Linux Kernel
  • *

Weaknesses

Common security weaknesses mapped to this vulnerability.

CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
The product contains a code sequence that can run concurrently with other code, and the code sequence requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence that is operating concurrently.

CVSS Score

4.7 / 10

CVSS Data - 3.1

  • Attack Vector: LOCAL
  • Attack Complexity: HIGH
  • Privileges Required: LOW
  • Scope: UNCHANGED
  • Confidentiality Impact: NONE
  • Integrity Impact: NONE
  • Availability Impact: HIGH
  • CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H

    View Vector String

Timeline

Published: Oct. 21, 2024, 12:15 p.m.
Last Modified: Nov. 8, 2024, 4:15 p.m.

Status : Modified

CVE has been recently published to the CVE List and has been received by the NVD.

More info

Source

416baaa9-dc9f-4396-8d5f-8c081fb06d67

*Disclaimer: Some vulnerabilities do not have an associated CPE. To enhance the data, we use AI to infer CPEs based on CVE details. This is an automated process and might not always be accurate.